Nrf2 silencing to inhibit proteolytic defense induced by hyperthermia in HT22 cells
نویسندگان
چکیده
Nrf2 pathway has been known to be protective against cancer progression however recent studies have revealed that the antioxidant activity of Nrf2 contributes to chemotherapy resistance. For many years, hyperthermia has been used as an additional therapy to increase the efficiency of chemotherapy and radiotherapy. Besides the positive effects of hyperthermia during treatment procedure, thermotolerance has been found to develop against heat treatment. Although the involved molecular mechanisms have not been fully clarified, heat shock proteins (HSP) and proteasome activity are known to be involved in the acquisition of thermotolerance. The aim of this study was to investigate the potential beneficial effects of combining hyperthermia with Nrf2 silencing to inhibit molecular mechanisms leading to induction of defense mechanisms in transcription level. Following heat treatment of HT22 cells, HSP70 and the proteasome levels and as well as proteasome activity were found to be elevated in the nucleus. Our results demonstrated that Nrf2 silencing reduced defense mechanisms against heat treatment both in antioxidant and proteolytic manner and Nrf2 may be a potential target for therapeutic approach in order to improve the beneficial effects of hyperthermia in cancer therapy.
منابع مشابه
Cudarflavone B provides neuroprotection against glutamate-induced mouse hippocampal HT22 cell damage through the Nrf2 and PI3K/Akt signaling pathways.
Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS) diseases such as Alzheimer's disease, Parkinson's disease, and ischemia. Nrf2 signaling-mediated heme oxygenase (HO)-1 expression acts against oxidants that are thought to play a key role in the pathogenesis of neuronal diseases. Cudraflavone B is a prenylated flavone isolated from C. tricuspidata wh...
متن کاملTomato and Tobacco Phytoene Desaturase Gene Silencing by Virus-Induced Gene Silencing (VIGS) Technique
Background and Aims: Virus-Induced Gene Silencing (VIGS) is a virus vector technology that exploits antiviral defense mechanism. By infecting plants with recombinant viruses containing host genes inserted in the viral genome, VIGS achieves the RNA silencing process. The purpose of this study was to investigate the possibility of tomato (Lycopersicon esculentum Mill.) and tobacco (Nicotiana be...
متن کاملAcerogenin A from Acer nikoense Maxim Prevents Oxidative Stress-Induced Neuronal Cell Death through Nrf2-Mediated Heme Oxygenase-1 Expression in Mouse Hippocampal HT22 Cell Line.
Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS) diseases such as Parkinson's disease, Alzheimer's disease, and ischemia. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a key role in the pathogenesis of neuronal diseases. The stem bark of Acer nikoense Maxim (Aceraceae) is indigenous to Japan; it has been used in fol...
متن کاملAnti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines
In the course of searching for bioactive secondary metabolites from marine fungi, TMC-256C1 was isolated from an ethyl acetate extract of the marine-derived fungus Aspergillus sp. SF6354. TMC-256C1 displayed anti-neuroinflammatory effect in BV2 microglial cells induced by lipopolysaccharides (LPS) as well as neuroprotective effect against glutamate-stimulated neurotoxicity in mouse hippocampal ...
متن کاملHomocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells
Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...
متن کامل